# STUDIES ON BIOAGENTS OF PIGEONPEA POD BORERS IN NORTH GUJARAT

RODGE, V. J.; PATEL, P. S. AND \*DEB, SUSHMA

# DEPARTMENT OF AGRICULTURAL ENTOMOLOGY C. P. COLLEGE OF AGRICULTURE S. D. AGRICULTURAL UNIVERSITY SARDARKRUSHINAGAR- 385 506, GUJARAT, INDIA

\*EMAIL: debsushma@gmail.com

#### **ABSTRACT**

Surveys conducted at five locations of Banaskantha district viz., Dantiwada, Deesa, Palanpur, Danta and Amirgadh during 2011-12 and 2012-13 resulted in collection of six predator species viz., Spiders, Coccinella Septempunctata, Menochilus sexmaculata, Mantis religiosa, Chrysoperla carnea and Vespa sp. in pigeonpea. Ladybird beetles viz., M. sexmaculata (24.14%, 26.84%, 25.99%, 20.03% and 23.08%) and C. septempunctata (24.54%, 20.55%, 24.76%, 31.27%, 25.42%) dominated the pigeonpea ecosystem at Dantiwada, Deesa, Palanpur, Danta, and Amirgadh, respectively. Total nine parasitoids were recorded from pod borers viz., Helicoverpa armigera (Carcelia spp., Goniopthalmus halli and Chelonus sp.), Maruca vitrata (Habrobracon hebetor, Tetrasticus sp., and Elasmus sp.) and Melanagromyza obtusa (Euderus lividus, Orymyrus sp. and Eurytoma sp.). Maximum parasitism was observed in case of Carcelia spp. on H. armigera (15.41% at Amirgadh in January), H. hebetor on M. vitrata (16.67% at Danta in December) and E. lividus on M. obtusa (13.33% at Amirgadh in January).

KEY WORDS: Bioagents, Pod borers, Pigeonpea, Survey

### **INTRODUCTION**

Pigeonpea, Cajanus cajan (L) Mill. is an important grain legume crop of semiarid tropical and subtropical farming systems. Being rich source of protein (18 to 26 %), it is the second most important pulse crop grown in the country next to chickpea. India ranks 1<sup>st</sup> in terms of area and production in the world with 80 per cent and 67 per cent of world's acreage and production in the year 2016-17, respectively with 45.99 lakh tonnes pigeonpea seeds from an area of 53.87 lakh hectares (3<sup>rd</sup> Adv. Estimates). Gujarat contributes only 3.69 lakh tonnes of pigeonpea seeds from an area of 3.34 lakh hectares (Anon., 2017). Among several factors confining its potential

production, damage by insect pests is predominant. Pod borer complex Helicoverpa armigera (Hubner), Maruca vitrata **Fabricius** and pod fly, Melanagromyza Malloch obtusa were considered as the primary biotic constraints to pigeonpea production causing losses up to 100 per cent (Sharma et al., 2009), 51 per cent (Vishkantaiah and Sundarababu, 1980) cent (Ahmed, and 63 per respectively. Apart from these notorious pests, there may be some bioagents present in the crop which directly or indirectly influence the pest population. The information regarding influence of these biotic factors on pod borers is very scanty in Gujarat. Therefore, North present

ISSN: 2277-9663

investigation was conducted to study the various bioagents of pigeonpea pod borers and their relative abundance in North Gujarat.

#### MATERIALS AND METHODS

Relative abundance of bioagents in pigeonpea was studied at five different locations i.e. Dantiwada, Deesa, Palanpur, Danta, and Amirgadh of Banaskantha district. Three fields from each location (i) Mean density:

were selected. In each field, ten plants were selected randomly and tagged for study purpose. Populations of predators were recorded from these tagged plants at fortnight interval. The data on predator population so obtained were subjected to mathematical/ statistical analysis towards estimating mean density and relative abundance.

ISSN: 2277-9663

Mean density = 
$$\frac{\sum Xi}{n}$$
 (i= 1, 2, 3....., n) Where,

Number of predators in i<sup>th</sup> months Xi Total number of observations n

## (ii) Relative abundance (%):

Relative abundance (%) = 
$$\frac{\text{Number of individuals of one species}}{\text{Number of individuals of all species}} \times 100$$

For studying the prevailed parasitoids, larvae of H. armigera and M. vitrata, were collected from these selected fields of different locations. Thus, fortnightly a total of twenty larvae of respective pests were brought to Entomology Laboratory of Centre of Excellence for Research on Pulses, S. D. Agricultural University, Sardarkrushinagar. The larvae were fed with flower buds, flowers and tender pods till pupation. The parasitoids emerged were collected and counted to calculate per cent parasitization under field conditions.

For observing parasitoids of M. obtusa, twenty pupae from each replicated trial were collected at the time of harvesting and kept separately in plastic vials. The adult parasitoids so emerged were collected and per cent parasitization was calculated.

# RESULTS AND DISCUSSION Relative abundance of predators

Surveys conducted at five locations of Banaskantha district viz., Dantiwada, Deesa, Palanpur, Danta, and Amirgadh

during 2011-12 and 2012-13 resulted in collection of six predator species viz., Coccinella Spiders, septempunctata (Linnaeus), Menochilus sexmaculata (Fabricius), Mantis religiosa (Zagrosti), Chrysoperla carnea (Stephens), and Vespa sp. in pigeonpea. Based on two years data (Table 1), it was cleard that ladybird beetles viz., M. sexmaculata (24.14, 26.84, 25.99, 20.03 and 23.08 % relative abundance) and C. septumpunctata (24.54, 20.55, 24.76, 31.27 and 25.42% relative abundance) dominated the pigeonpea ecosystem with higher relative abundance at Dantiwada, Deesa, Palanpur, Danta and Amirgadh, respectively. Spiders had also showed relatively higher abundance with a range of 16.60 to 23.33 per cent at different locations. The relative abundance of rest of three predator species viz., M. religiosa, C. carnea and Vespa sp. varied considerably among the different areas, which ranged from 9.21 to 12.87 per cent, 8.76 to 11.32 per cent and 6.14 to 14.17 per cent at different locations,

respectively. Rajeswaran et al. (2005) and Kumar and Nath (2007) documented these predators species of common occurrence in pigeonpea, chickpea, cowpea, greengram, lentil and other pulse crops. Similarly, Senapati and (2000) reported predators of pigeonpea pod borers as spiders, wasp and preying mantids. Mahendra et al. (2011) also recorded C. septempuctata, М. sexmaculata, religiosa, Rhinocoris fucipes and C. carnea as natural enemies of H. armigera in pigeonpea. However, according to Mittal and Ujagir (2005), spiders are more prevalent in pigeonpea than other natural enemies.

# Activity of parasitoids on pigeonpea pod borers

It was observed that three parasitoid species viz., Carcelia spp., Goniopthalmus halli and Chelonus sp. were found parasitizing pod borer, H. armigera in the field during study period (Table 2). Among these parasitoids, Carcelia spp. was most active and caused higher rate parasitization (1.25 to 15.41 %) at all the locations (Dantiwada, Deesa, Palanpur, Danta and Amirgadh) surveyed. It was followed by G. halli, for which the rate of parasitization was noted with a range of 1.66 to 11.66 per cent at different locations. Chelonus sp. was observed moderately active and brought about as high as 8.75 per cent parasitization at Danta during the month of January. In earlier reports, tachinid flies (Carcelia spp. and G. halli) were recorded as active parasitoids of H. armigera (Bisane and Deotale, 2008) which support the present findings. Thanavendan and Jeyarani (2009) observed field release of braconid parasitoids, Chelonus effective against *H. armigera* in tomato and okra.

In all surveyed pigeonpea growing areas, spotted pod borer (M. vitrata) was observed to be parasitized by three parasitoids viz., Habrobracon hebetor,

Tetrasticus sp. and Elasmus sp. during cropping season (Table 2). Braconid wasp, H. hebetor was recorded to be most active at all the locations with higher rate of parasitization in the tune of 1.25 to 16.67 per cent. The parasitizing activity of Tetrasticus sp. on *M. vitrata* was noted to be as high as 7.91 per cent at Danta during January. The maximum rate of parasitization for Elasmus sp. was observed as high as 6.66 per cent which was recorded at Amirgadh during the month of December. Experimental results of Mohapatra et al. (2008) support the present findings who reported larval parasitization of M. vitrata by Bracon hebetor in short duration pigeonpea, whereas Tetrasticus sp. and Elasmus sp. were reported parasitizing various lepidopterous pests (Mehrnejad, 2012).

The per cent parasitism of M. obtusa in pigeonpea indicated that three pupal parasitoids viz., Euderus lividus, Orymyrus sp. and Eurytoma sp. attacked on pod fly, M. obtusa in all pigeonpea growing areas surveyed (Table 2). Among these, E. lividus was observed more active, as it caused 9.17 to 13.33 per cent parasitization of the pest at various locations. In case of *Orymyrus* sp. and Eurytoma sp., the rate of parasitism was noted in the range of 6.67 to 9.17 per cent and 5.00 to 10.00 per cent at different locations. Dar et al. (2005) recorded E. lividus, Orymyrus sp. and Eurytoma sp. as active parasitoids of M. obtusa in pigeonpea which concord with the present investigation.

#### **CONCLUSION**

Ladybird beetles viz... М. sexmaculata and *C*. septempunctata dominated the pigeonpea ecosystem with higher relative abundance as compared to spider, mantids, Chrysopids and Vespa sp. at various locations viz., Dantiwada, Deesa, Palanpur, Danta, and Amirgadh, respectively. Total nine parasitoids were recorded from pod borers viz., Helicoverpa

armigera (Carcelia spp., Goniopthalmus halli and Chelonus sp.), Maruca vitrata (Habrobracon hebetor, Tetrasticus sp., and Elasmus sp.) and Melanagromyza obtusa Orymyrus (Euderus lividus, Eurytoma sp.) during study period. Carcelia spp., H. hebetor and E. lividus were most active parasitoids against H. armigera, M. vitrata and M. obtusa, respectively.

## **REFERENCES**

- Ahmed, T. (1983). The tur pod fly, Melanogromyza obtusa Mall, a pest of Cajanus cajan. Indian J. Agric. Sci., 8: 63-76.
- Anonymous (2017). Pulses in India: Retrospect & Prospects. Published by Director, Govt. of India, Ministry of Agri. & Farmers Welfare (DAC&FW), Directorate of Pulses Development, Vindhyachal Bhavan, Bhopal, M.P. Website: http://dpd.dacnet.nic.in
- Bisane, K. D. and Deotale, R. O. (2008). Investigation on key mortality factors of Helicoverpa armigera (Hubner) on pigeonpea and chickpea. J. Food Legumes, 21(4): 266-269.
- Dar, M.H.; Rizvi, P.Q.; Saxena, H. and Nagvi, N. A. (2005). Influence of resistant and susceptible pigeonpea parasitization the cultivars on efficiency of some parasitoids on pod fly, Melanagromyza obtusa (Malloch). J. Biol. Control, 19(2): 87-92.
- Kumar, A. and Nath, P. (2007). Diversity of natural enemies of insect pest in pigeonpea. medium-late Environ. Ecol., **25**(2): 394-398.
- Mahendra, R.; Jagadeesh Babu, C. S.; Umesh, K.; Santosh, D. T. and Shashidhara, N. (2011). Helicoverpa armigera and its natural enemy complex- A case study in pigeonpea ecosystem. International J. Agric. Environ. Biotech., 3: 193-194.

- Mehrnejad, M. R. (2012). Biological parameters of Elasmus nudus (Hymenoptera, Eulophidae), parasitoids of the pistachio fruit hull borer moth. Arimania komaroffi (Lepidoptera: Pyralidae). Biocontrol Sci. Tech., 22(6): 659-670.
- Mittal, V. and Ujagir, R. (2005). Toxicity of Spinosad 45 Sc to natural enemies associated with insect pests of pigeonpea at Pantnagar. J. Biol. Control, **19**(1): 73-76.
- Mohapatra, S. D.; Duraimurugan, P. and Saxena, H. (2008).Natural parasitization of Maruca vitrata (Geyer) by Bracon hebetor. Indian Institute of Pulses Research, Kanpur. Pulses Newsl., 19(4): 1-5.
- Rajeswaran, J.; Duraimurugan, P. and Shanmugam, P. S. (2005). Role of spiders in agriculture and horticulture ecosystem. J. Food, Agric. Environ., **3**(3&4): 147-152.
- Sahoo, B. K. and Senapati, B. (2000). Natural enemies of pod borers in pigeonpea. International Chickpea Pigeonpea Newsl., 7: 57-59.
- Sharma, H. C.; Sujana, G. and Manohar, R. D. (2009).Morphological chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod-Plant Interactions, 3: 151-161.
- Thanavendan, G. and Jeyarani, S. (2009). Biointensive management of okra fruit borers using braconid parasitoids (Braconidae: Hymenoptera). Tropical Agric. Res., 21(1): 39-50.
- Vishkantaiah, M. and Sundarababu, J. B. C. **Bionomics** (1980).of the webworm. Maruca testulalis (Lepidoptera: Pyralidae). Mysore J. Agric. Sci., 14: 529-532.

www.arkgroup.co.in **Page 123** 

Table 1: Relative abundance of predators in pigeonpea growing areas

| Predators         | Dantiwada |           | Deesa |           | Palanpur |           | Danta |           | Amirgadh |           |
|-------------------|-----------|-----------|-------|-----------|----------|-----------|-------|-----------|----------|-----------|
|                   |           | Relative  |       | Relative  |          | Relative  |       | Relative  |          | Relative  |
|                   | Mean      | abundance | Mean  | abundance | Mean     | abundance | Mean  | abundance | Mean     | abundance |
|                   |           | (%)       |       | (%)       |          | (%)       |       | (%)       |          | (%)       |
| Spider            | 5.57      | 23.33     | 4.07  | 17.30     | 4.13     | 18.94     | 3.44  | 16.60     | 4.32     | 19.10     |
| C. septempunctata | 5.88      | 24.54     | 4.57  | 20.55     | 5.38     | 24.76     | 6.26  | 31.27     | 5.51     | 25.42     |
| M. sexmaculata    | 5.76      | 24.14     | 6.00  | 26.84     | 5.63     | 25.99     | 4.38  | 20.03     | 5.07     | 23.08     |
| M. religiosa      | 2.19      | 9.21      | 2.32  | 10.30     | 2.82     | 12.87     | 2.63  | 12.38     | 2.69     | 12.09     |
| C. carnea         | 2.13      | 8.87      | 2.44  | 10.86     | 2.51     | 11.32     | 1.88  | 8.76      | 2.13     | 9.92      |
| Vespa spp.        | 2.38      | 9.92      | 3.19  | 14.17     | 1.32     | 6.14      | 2.25  | 10.98     | 2.25     | 10.41     |

www.arkgroup.co.in Page 124

Table 2: Parasitism on pod borers in pigeonpea growing areas

| Location  | Month | Parasitism (%) on |            |          |         |             |         |                        |          |          |  |
|-----------|-------|-------------------|------------|----------|---------|-------------|---------|------------------------|----------|----------|--|
|           |       | 1                 | H. armiger | ra       |         | M. vitrata  |         | M. obtusa (at harvest) |          |          |  |
|           |       | Carcelia          | G. halli   | Chelonus | Н.      | Tetrasticus | Elasmus | Euderus                | Orymyrus | Eurytoma |  |
|           |       | spp.              |            | sp.      | hebetor | sp.         | sp.     | lividus                | sp.      | sp.      |  |
| Dantiwada | Nov   | 0                 | 2.50       | 0        | 1.25    | 0.83        | 1.25    | 9.17                   | 7.50     | 5.84     |  |
|           | Dec   | 7.50              | 5.83       | 2.50     | 7.92    | 4.17        | 3.33    |                        |          |          |  |
|           | Jan   | 11.25             | 7.08       | 2.50     | 8.33    | 6.25        | 3.33    |                        |          |          |  |
| Deesa     | Nov   | 0                 | 2.08       | 0.83     | 1.25    | 0.84        | 1.25    | 10.84                  | 6.67     | 8.34     |  |
|           | Dec   | 5.41              | 4.58       | 2.50     | 8.75    | 4.58        | 5.00    |                        |          |          |  |
|           | Jan   | 12.08             | 4.58       | 1.67     | 11.67   | 7.50        | 5.00    |                        |          |          |  |
| Palanpur  | Nov   | 1.25              | 1.66       | 0.83     | 2.92    | 1.25        | 1.67    | 11.67                  | 7.50     | 5.00     |  |
|           | Dec   | 7.50              | 3.33       | 1.66     | 6.67    | 4.58        | 3.33    |                        |          |          |  |
|           | Jan   | 14.16             | 7.08       | 2.08     | 12.92   | 6.25        | 5.83    |                        |          |          |  |
| Danta     | Nov   | 1.91              | 2.08       | 0        | 4.58    | 2.09        | 1.25    | 11.67                  | 8.33     | 9.17     |  |
|           | Dec   | 8.74              | 6.67       | 4.58     | 9.17    | 7.08        | 5.82    |                        |          |          |  |
|           | Jan   | 14.75             | 11.66      | 8.75     | 16.67   | 7.91        | 6.25    |                        |          |          |  |
| Amirgadh  | Nov   | 1.67              | 2.08       | 2.08     | 1.67    | 1.25        | 2.09    | 13.33                  | 9.17     | 10.00    |  |
|           | Dec   | 7.50              | 5.41       | 3.74     | 10.83   | 6.66        | 6.66    |                        |          |          |  |
|           | Jan   | 15.41             | 7.50       | 5.83     | 10.75   | 6.25        | 2.92    |                        |          |          |  |

[MS received : April 05 , 2019] [MS accepted :May 07, 2019]

www.arkgroup.co.in Page 125